Synthetic gene circuits: design with directed evolution.
نویسندگان
چکیده
Synthetic circuits offer great promise for generating insights into nature's underlying design principles or forward engineering novel biotechnology applications. However, construction of these circuits is not straightforward. Synthetic circuits generally consist of components optimized to function in their natural context, not in the context of the synthetic circuit. Combining mathematical modeling with directed evolution offers one promising means for addressing this problem. Modeling identifies mutational targets and limits the evolutionary search space for directed evolution, which alters circuit performance without the need for detailed biophysical information. This review examines strategies for integrating modeling and directed evolution and discusses the utility and limitations of available methods.
منابع مشابه
A nucleoside kinase as a dual selector for genetic switches and circuits
The development of genetic switches and their integrated forms (genetic circuits) with desired specifications/functions is key for success in synthetic biology. Due to the difficulty in rational design, genetic switches and circuits with desirable specifications are mostly obtained by directed evolution. Based on a virus-derived nucleotide kinase as a single-gene dual selector, we constructed a...
متن کاملSynthetic biology: integrated gene circuits.
A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits "from scratch" that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of...
متن کاملEngineering orthogonal dual transcription factors for multi-input synthetic promoters
Synthetic biology has seen an explosive growth in the capability of engineering artificial gene circuits from transcription factors (TFs), particularly in bacteria. However, most artificial networks still employ the same core set of TFs (for example LacI, TetR and cI). The TFs mostly function via repression and it is difficult to integrate multiple inputs in promoter logic. Here we present to o...
متن کاملMaking gene circuits sing.
H ow many tries did it take to get that to work? The doubleedged question, which arises regularly at synthetic biology meetings, succinctly summarizes a major hurdle for the field; even with the successes and enormous potential for the construction of genetic circuits in living cells, it is commonly understood that cloning and computational expertise do not typically lead to circuits that funct...
متن کاملDirected evolution of a genetic circuit.
The construction of artificial networks of transcriptional control elements in living cells represents a new frontier for biological engineering. However, biological circuit engineers will have to confront their inability to predict the precise behavior of even the most simple synthetic networks, a serious shortcoming and challenge for the design and construction of more sophisticated genetic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of biophysics and biomolecular structure
دوره 36 شماره
صفحات -
تاریخ انتشار 2007